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ABSTRACT: Estimating fish condition, the relative weight of an individual fish given its 

body length, is an easy way to relate the physiological health and energetic status of fishes to 

their productivity. Despite evidence of density-dependence effects on condition in some 

species, previous research has not jointly estimated synchronous changes in condition and 

density operating at fine spatial scales. Therefore, we developed a spatio-temporal modeling 

approach that simultaneously estimates correlated variation in density (measured as numbers 

per area) and condition, where the correlation can be negative (e.g. due to density-dependent 

competition for food) or positive. We applied our approach to six Eastern Bering Sea (EBS) 

groundfish species (four flatfishes and two gadoids) for the period 1992-2016, and estimated 

correlations in spatial variation (persistent patterns) and spatio-temporal variation (short-term 

patterns). Spatial variation in density had a strong negative effect on spatial variation in 

condition for the four flatfish species (significant for three species). Spatio-temporal variation 

in density had a significant negative effect on spatio-temporal variation in condition for two 

flatfish species. Moreover, for the six study species, bottom temperature was identified as an 

important predictor of both density and condition. The increasing trend in bottom 

temperatures between 1992 and 2016 was accompanied by an overall increase in the 

abundance-weighted condition of five species, including three flatfish species. In conclusion, 

it will be important to evaluate the impacts of accounting for or ignoring density-dependence 

and bottom temperature effects on condition within some EBS flatfish assessments (e.g. using 

a management strategy evaluation framework). 

 

KEY WORDS: Condition, Le Cren’s relative condition index, density-dependence, spatio-

temporal models, groundfishes, Eastern Bering Sea, bottom temperature effects  
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1. INTRODUCTION 

 The physiological health of fishes and their energetic status have been intensively 

studied to understand and predict their productivity (Wuenschel et al. 2019). Some of the 

most popular measures of physiology and energetic status include the hepatosomatic index, 

which determines the status of fish energy reserves by assessing liver weight relative to 

somatic weight, and the gonadosomatic index, which describes fish maturity by evaluating 

gonad weight relative to somatic weight (e.g. Lambert & Dutil 1997b, Copeland et al. 2008, 

Pardoe et al. 2008, Pardoe & Marteinsdóttir 2009). Many studies have also examined muscle 

and liver energy content or estimated the percent dry weight of muscle and liver (e.g. Love 

1958, Kjesbu et al. 1991, Lambert & Dutil 1997a, b, Boldt & Haldorson 2004). However, 

while physiological methods provide valuable information for studying fish productivity, they 

are typically logistically challenging and usually rely on a limited number of samples 

(Wuenschel et al. 2019).  

 Morphological indices of condition, which express fish weight relative to its length, 

are ways to relate the physiological health and energetic status of fishes to their productivity 

(Nash et al. 2006, Boldt et al. 2015). Morphological indices of condition (hereafter simply 

referred to as “condition indices”) are “integrated measures of physiology for fish 

populations” that account for fish behavior, life history, environmental and species 

interactions (Murphy et al. 1990). One of the most employed condition indices is Fulton’s 

condition factor, which is the ratio of fish weight to the cube of fish length (Lambert & Dutil 

1997b, Nash et al. 2006). Another widely used and similar condition index is Le Cren’s 

relative condition factor (Le Cren 1958), which defines condition as residuals from an 

allometric length-weight relationship and, therefore, does not impose the relationship between 

fish length and weight to be cubic (Froese 2006, Pardoe et al. 2008, Thorson 2015).  
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 Condition indices can inform potential survival, reproduction and recruitment 

successes of fishes. The condition of Pacific herring (Clupea pallasii) in Prince William 

Sound, Alaska was shown to partly influence fish overwintering survival (Paul & Paul 1999). 

Lambert & Dutil (1997b) discussed that the poor condition of northern Gulf of St. Lawrence 

cod (Gadus morhua) between the late 1980s and the early 1990s may have greatly contributed 

to the very high mortality rate of the stock, along with overfishing. Other studies similarly 

found that poor condition may have reduced survival for diverse fish populations (e.g. Love 

1958, Wilkins 1967, Krivobok & Tokareva 1972, Newsome & Leduc 1975). Moreover, fishes 

in poor condition tend to allocate less energy to gonadal development, which may reduce the 

probability of being mature (e.g. Henderson & Morgan 2002, Henderson & Morgan 2002, 

Morgan 2004, Dutil et al. 2006) and, therefore, may lower reproduction success. Poor 

condition can also affect reproduction success by increasing the probability of skipped 

spawning (Burton et al. 1997, Marshall et al. 1998, Rideout et al. 2000, Jørgensen et al. 2006) 

or decreasing fecundity (Pinhorn 1984, Kjesbu et al. 1991). Finally, by decreasing total egg 

production (Marshall & Frank 1999), egg and larval size (Chambers & Leggett 1996, 

Chambers & Waiwood 1996, Marteinsdottir & Steinarsson 1998) or egg and larval quality 

(Kjesbu et al. 1992, Chambers & Leggett 1996), poor condition of mature fish may have a 

negative impact on recruitment success.  

 Because condition indices provide rich information on potential fish productivity and 

can be estimated based on large sample sizes, they are valuable for stock and habitat 

assessments. Many stock assessments are age-structured and employ weight-at-age estimates 

to convert abundances into biomasses and catches in numbers into catches in biomass. 

Condition indices can be used to generate time-varying weight-at-age estimates, with the goal 

to improve the goodness-of-fit of age-structured assessment models to data (Thorson 2015). 

Moreover, variation in the relationship between reproductive potential and subsequent 
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recruitment is typically poorly explained (Barrowman & Myers 1996, Francis 1997). By 

relating reproductive potential to variation in weight-at-length of fishes, condition indices can 

help fisheries analysts produce more reliable recruitment estimates. For example, condition 

indices can serve to better quantify the number of batches spawned per year and the number 

of eggs spawned per batch of the different age classes of mature fish in relation to their weight 

(Marshall & Frank 1999, Fitzhugh et al. 2012), or the rate at which these different age classes 

skip spawning (Rideout et al. 2005, Jørgensen et al. 2006). Finally, estimates of spatial 

variation in condition can be employed in habitat assessments to identify areas where the 

condition of mature individuals is high during the spawning season and which may, therefore, 

have disproportionate importance for spawning output. These areas may then be given 

primary consideration in spatial management plans aiming to protect spawners (Lloret et al. 

2002, Grüss et al. 2018).  

 Spatio-temporal changes in condition and density are expected to take place 

simultaneously. A large local increase in density may result in decreased condition, due to 

increased competition for food (e.g. Boxrucker 1987, Pardoe et al. 2008, Thorson 2015). 

However, in some areas, at least over a certain time period, density and condition may 

respond similarly to local environmental conditions. For instance, increased local 

temperatures may boost prey abundance while being optimal for the physiological processes 

of the species of interest, thereby increasing both local density and condition for this species 

(Boldt et al. 2015). Thus, it appears important to quantify density-dependence in fish 

condition over space and time.  

 Several factors govern physiological and ecological processes, which in turn govern 

fish condition and density. In particular, bottom temperature was found to influence local 

density and condition simultaneously in many fish populations (e.g. Michalsen et al. 1998, 

Hunt et al. 2008, Boldt et al. 2015, Thorson 2015, Laurel et al. 2016). For example, the shift 
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from sequential cold years to warm years in the Eastern Bering Sea (EBS), Alaska that is 

responsible for changes in population density distribution in some groundfish species may 

lead to large changes in spatial overlap with prey, with subsequent effects on groundfish 

condition (Hunt et al. 2008, Boldt et al. 2015). Specifically, the reduction of the extent of the 

cold pool (i.e. the area of the EBS with bottom temperatures at or below 2°C) in relatively 

warm years is accompanied by expansions in the habitat occupied by some groundfish species 

such as walleye pollock (Gadus chalcogrammus). These groundfish species can then access 

the Middle Shelf of the EBS where the cold pool would usually persist. The increase in the 

area occupied by the groundfish species may allow for better foraging opportunities, thereby 

improving groundfish condition (Hunt et al. 2008, Boldt et al. 2015). 

 In recent years, statistical models that account for spatial and spatio-temporal structure 

at a fine scale (“spatio-temporal models”) have been increasingly used for informing stock 

and habitat assessments (Grüss & Thorson 2019, Thorson 2019a). In particular, Thorson 

(2015) developed the first spatio-temporal model estimating spatio-temporal changes in fish 

condition, which he applied to California Current groundfishes. This spatio-temporal model 

was designed to understand how much of the total variation in condition among individuals 

was explained by covariates (including population density, bottom temperature, and calendar 

day), temporal variation in condition, spatial variation in condition (i.e. unmeasured variation 

in condition that is stable over time) and spatio-temporal variation in condition (i.e. 

unmeasured variation in condition that changes between years). Thorson (2015) found that 

spatial variation in condition and, to a greater extent, spatio-temporal variation in condition 

explained a large proportion of total variation among individuals. In this study, we extend the 

approach of Thorson (2015) by developing the first spatio-temporal model simultaneously 

estimating spatial and spatio-temporal variation in fish density and Le Cren’s relative 

condition factor (hereafter simply referred to as “condition”). We apply this spatio-temporal 
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model to six EBS groundfish species over the period 1992-2016 to answer the following 

questions: (1) Are correlations between density and condition statistically significant? and (2) 

Are areas with higher density associated with lower condition (e.g. due to density-dependent 

competition for food) or greater condition (e.g. because high quality habitat leads to localized 

concentration of fish while being optimal for fish physiological processes)? We develop 

alternative spatio-temporal models including or not including bottom temperature effects on 

density and/or condition, and we then select the most parsimonious model for each groundfish 

species based on Akaike’s information criterion (AIC). Next, we examine correlations 

between spatial variation in density and spatial variation in condition and between spatio-

temporal variation in density and spatio-temporal variation in condition. Finally, we analyze 

spatio-temporal changes in density and condition in relation to local bottom temperatures 

where relevant.  

 

2. MATERIALS AND METHODS 

2.1. Model specifications 

Our spatio-temporal model is a multivariate lognormal generalized linear mixed model 

(GLMM) which simultaneously estimates spatial and spatio-temporal variation in condition 

(in units weight per a power-function of length) and numbers-density (in units numbers per 

area). If we measured density in biomass, then an increase in condition (greater weight per 

length) would necessarily drive an increase in biomass-density, thus resulting in a positive 

correlation ceteris paribus. To avoid this mechanism generating correlations between density 

and condition, we measure density in numbers rather than biomass. Our spatio-temporal 

model is implemented with R package “VAST” release number 3.0.0 (Thorson 2019a), which 

is publicly available online (https://github.com/James-Thorson-NOAA/VAST).  

https://github.com/James-Thorson-NOAA/VAST
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Typically, measurements of fish body weight, 𝑊𝑊, are assumed to be randomly 

distributed around an expected body weight that is calculated as an allometric function of 

body length:  

𝑊𝑊 = 𝑔𝑔(𝑤𝑤) 
𝑤𝑤 = 𝛼𝛼𝑙𝑙𝛽𝛽 

 

(1) 

where 𝛼𝛼 is the condition coefficient (with units weight per a power-function of length); 𝛽𝛽 is 

the allometric coefficient (with dimensionless units); 𝑔𝑔 is a probability distribution that 

represents unexplained variation in fish body length; and 𝑤𝑤 is predicted body weight (in units 

kilograms) for a given length 𝑙𝑙 (in units meters). Le Cren’s relative condition factor is 

calculated from the residuals of this allometric relationship (Le Cren 1958). From weight and 

length data, our spatio-temporal model approximates condition using a log link function and 

linear predictors, including a Gaussian Markov random field representing spatial variation in 

condition and another Gaussian Markov random field representing spatio-temporal variation 

in condition: 

log(𝑤𝑤(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)) = δ𝑤𝑤(𝑡𝑡𝑖𝑖) + 𝜔𝜔𝑤𝑤(𝑠𝑠𝑖𝑖) + 𝜀𝜀𝑤𝑤(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)+∑ 𝛾𝛾𝑤𝑤(𝑡𝑡𝑖𝑖 ,𝑘𝑘)𝑋𝑋(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 ,𝑘𝑘)𝑛𝑛𝑘𝑘
𝑘𝑘=1 + 𝛽𝛽log(𝑙𝑙𝑖𝑖) 

 
(2) 

where 𝑡𝑡𝑖𝑖 and 𝑠𝑠𝑖𝑖 are, respectively, the year and the location associated with sample i; δ𝑤𝑤(𝑡𝑡𝑖𝑖) is 

the intercept for year 𝑡𝑡𝑖𝑖, which is estimated as a fixed effect; 𝜔𝜔𝑤𝑤(𝑠𝑠𝑖𝑖) represents spatial 

variation in condition and is estimated as a random effect; 𝜀𝜀𝑤𝑤(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) represents spatio-

temporal variation in condition and is estimated as a random effect; 𝑋𝑋(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 ,𝑘𝑘) is an array of 

𝑛𝑛𝑘𝑘 measured covariates that explain variation for year 𝑡𝑡𝑖𝑖 and location 𝑠𝑠𝑖𝑖; and 𝛾𝛾𝑤𝑤(𝑡𝑡𝑖𝑖 ,𝑘𝑘) is the 

estimated impact of covariates. Eq. (2) corresponds to Le Cren (1958)’s condition factor 

equation: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛(𝑊𝑊) = 𝑤𝑤(𝑠𝑠, 𝑡𝑡) = exp (δ𝑤𝑤(𝑡𝑡) + 𝜔𝜔𝑤𝑤(𝑠𝑠) + 𝜀𝜀𝑤𝑤(𝑠𝑠, 𝑡𝑡) + �𝛾𝛾𝑤𝑤(𝑡𝑡,𝑘𝑘)𝑋𝑋(𝑠𝑠, 𝑡𝑡,𝑘𝑘)
𝑛𝑛𝑘𝑘

𝑘𝑘=1

) 𝑙𝑙𝛽𝛽 
(3) 



10 
 

such that the intercept 𝛼𝛼(𝑠𝑠, 𝑡𝑡) = exp (δ𝑤𝑤(𝑡𝑡) + 𝜔𝜔𝑤𝑤(𝑠𝑠) + 𝜀𝜀𝑤𝑤(𝑠𝑠, 𝑡𝑡) + ∑ 𝛾𝛾𝑤𝑤(𝑡𝑡,𝑘𝑘)𝑋𝑋(𝑠𝑠, 𝑡𝑡,𝑘𝑘)𝑛𝑛𝑘𝑘
𝑘𝑘=1 ) 

varies across space and time.   

When explaining variation in density (numbers per unit area), we fit a spatio-temporal 

model to catch data 𝑐𝑐𝑖𝑖 and use a delta-lognormal distribution where the probability of 

encounter of the species under consideration 𝑝𝑝 and its expected density given encounter 

(referred to as “positive catch rate”) 𝑟𝑟 are estimated; these two quantities are then multiplied 

together to yield numbers-density estimates (Lo et al. 1992, Grüss et al. 2019). The delta-

lognormal model calculates the probability of catch rate data as: 

Pr(𝑐𝑐(𝑀𝑀) = 𝐶𝐶) = �
1 − 𝑝𝑝(𝑀𝑀) 𝑀𝑀𝑖𝑖 𝐶𝐶 = 0

𝑝𝑝(𝑀𝑀) × 𝑔𝑔(𝐶𝐶|𝑟𝑟(𝑀𝑀),𝜎𝜎𝑟𝑟2) 𝑀𝑀𝑖𝑖 𝐶𝐶 > 0 (4) 

where probability of encounter, 𝑝𝑝(𝑀𝑀)  = 1 − exp�−𝑀𝑀𝑖𝑖𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)�, follows a Poisson distribution 

with intensity equal to the product of local group-densities 𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) and the area sampled 𝑀𝑀𝑖𝑖, 

under the assumption that the spatial distribution of aggregations in the neighborhood of 

sampling is random (Thorson 2018); positive catch rate can be re-expressed as 𝑟𝑟(𝑀𝑀) =

𝑢𝑢𝑀𝑀𝑖𝑖𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)/𝑝𝑝(𝑀𝑀), where 𝑢𝑢 is the expected numbers-per-group, which is used to convert 

between 𝑀𝑀𝑖𝑖𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) (the expected number of independently distributed groups or patches) and 

𝑟𝑟(𝑀𝑀) (the expected number encountered); 𝑔𝑔(𝐶𝐶|𝑟𝑟(𝑀𝑀),𝜎𝜎𝑟𝑟2) is the log-normal probability density 

function for unexplained variation in 𝑐𝑐(𝑀𝑀); and 𝜎𝜎𝑟𝑟2 is residual catch rate variation. Our model 

approximates local density 𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) similarly to the way it approximates condition: 

log(𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)) = δ𝑛𝑛(𝑡𝑡𝑖𝑖) + 𝜔𝜔𝑛𝑛(𝑠𝑠𝑖𝑖) + 𝜀𝜀𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)+∑ 𝛾𝛾𝑛𝑛(𝑡𝑡𝑖𝑖 ,𝑘𝑘)𝑋𝑋(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 ,𝑘𝑘)𝑛𝑛𝑘𝑘
𝑘𝑘=1  

 
(5) 

We now generalize these two separate models for condition (Eqs. (1-3)) and numbers-

density (Eqs. (4-5)) to explain how we can simultaneously estimate both, including their 

correlation. In effect, our model is provided with both catch rate data and weight and length 

data, in order to simultaneously approximate two categories of variables, density (category 𝑐𝑐 

= 1) and condition (𝑐𝑐 = 2): 
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log(𝑦𝑦(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)) = δ𝑐𝑐𝑖𝑖(𝑡𝑡𝑖𝑖) + �𝐿𝐿𝑐𝑐𝑖𝑖,𝑓𝑓
(𝜔𝜔)𝜔𝜔𝑓𝑓(𝑠𝑠𝑖𝑖)

2

𝑓𝑓=1

+ �𝐿𝐿𝑐𝑐𝑖𝑖,𝑓𝑓
(𝜀𝜀) 𝜀𝜀𝑓𝑓(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)

2

𝑓𝑓=1

+ �𝛾𝛾𝑐𝑐𝑖𝑖(𝑡𝑡𝑖𝑖 ,𝑘𝑘)𝑋𝑋(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝑘𝑘)
𝑛𝑛𝑘𝑘

𝑘𝑘=1

+ 𝛽𝛽log(𝑙𝑙𝑖𝑖) 

 

(6) 

where 𝑦𝑦(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) = 𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) and 𝑙𝑙𝑖𝑖 = 0 when 𝑐𝑐𝑖𝑖 = 1, and 𝑦𝑦(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) = 𝑤𝑤(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) when 𝑐𝑐𝑖𝑖 = 2; two 

“factors” for spatial variation 𝜔𝜔𝑓𝑓 and the associations (i.e. correlations) 𝐿𝐿𝑐𝑐,𝑓𝑓
(𝜔𝜔) of condition and 

density with each factor are estimated; and two other “factors” for spatial variation 𝜀𝜀𝑓𝑓 and the 

associations 𝐿𝐿𝑐𝑐,𝑓𝑓
(𝜀𝜀)  of condition and density with each factor are also estimated. The matrices 

𝐿𝐿𝑐𝑐,𝑓𝑓
(𝜔𝜔) and 𝐿𝐿𝑐𝑐,𝑓𝑓

(𝜀𝜀)  can serve to calculate correlations between spatial variation in density and 

spatial variation in condition and between spatio-temporal variation in density and spatio-

temporal variation in condition, respectively (Thorson et al. 2016). Thus, the settings of our 

spatio-temporal model fitted to both catch rate data and weight and length data allow one to 

determine whether some areas with higher density are associated with lower or greater 

condition.  

More precisely, the spatial variation terms are modeled as Gaussian Markov random 

fields with correlations over two spatial dimensions and among density and condition 

(Thorson & Barnett 2017):  

𝑣𝑣𝑀𝑀𝑐𝑐(𝛀𝛀)~𝐺𝐺𝐺𝐺𝐺𝐺(𝟎𝟎,𝐑𝐑⊗ 𝐕𝐕𝜔𝜔) 
 

(7) 

where 𝛀𝛀 is a matrix composed of 𝜔𝜔𝑓𝑓(𝑠𝑠) at every location and category of variables (density 

and condition); 𝐑𝐑 is a matrix of correlations among locations 𝑠𝑠, which is calculated from a 

Matérn function given an estimated decorrelation rate and a transformation matrix 

representing geometric anisotropy (Thorson et al. 2015); ⊗ is the Kronecker product; and 𝐕𝐕𝜔𝜔 

is the correlation among density and condition: 

𝐕𝐕𝜔𝜔 = 𝐋𝐋𝜔𝜔𝐋𝐋𝜔𝜔𝑇𝑇  (8) 
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where 𝐋𝐋𝜔𝜔𝑇𝑇  is the transpose of 𝐋𝐋𝜔𝜔. Spatio-temporal variation terms are fit independently to each 

year and are modeled as Gaussian Markov random fields with Matérn covariance, similarly to 

spatial variation terms (Thorson & Barnett 2017).  

 

2.2. Parameter estimation 

All fixed effects of the spatio-temporal model are estimated by identifying the 

parameter values that maximize the marginal log-likelihood in the R statistical platform (R 

Core Development Team 2019). The Laplace approximation implemented by R package 

“TMB” (Kristensen et al. 2016) is employed to compute the marginal log-likelihood through 

an approximation of the integral across all random effects. TMB uses automatic 

differentiation to efficiently compute the matrix of second derivatives (which the Laplace 

approximation employs) and the gradient of the Laplace approximation (which is employed 

when the fixed effects are maximized). By maximizing the marginal log-likelihood given 

fixed effects’ maximum likelihood estimates (MLEs), TMB estimates all random effects. In 

addition, the likelihood of random effects is approximated using the stochastic partial 

differential equation method (Lindgren et al. 2011), for computational efficiency. Moreover, 

VAST employs the generalized delta method implemented in TMB to calculate the standard 

errors of all the fixed and random effects, as well as the standard errors of the derived 

quantities (Kass & Steffey 1989). We confirm that the spatio-temporal model is converged by 

checking that the gradient of the marginal log-likelihood is less than 0.0001 for all fixed 

effects, and that the Hessian matrix of second derivatives of the negative log-likelihood is 

positive definite.   

 

2.3. Application 
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 We apply our spatio-temporal modeling approach to six groundfish species of the EBS 

(Fig. 1), including four flatfish species (Kamchatka flounder (Atheresthes evermanni), 

arrowtooth flounder (Atheresthes stomias), flathead sole (Hippoglossoides elassodon) and 

yellowfin sole (Limanda aspera)), and two gadoids (Pacific cod (Gadus macrocephalus) and 

walleye pollock). These six species are among the species most frequently encountered by 

fisheries-independent monitoring programs in the EBS region (Stevenson & Hoff 2009). 

Moreover, walleye pollock is one of the most abundant and socio-economically important fish 

predators of the North Pacific region (Aydin & Mueter 2007), with an annual harvestable 

biomass of ca. 5 million metric tons and an annual harvested biomass greater than 1.2 million 

metric tons (Ianelli et al. 2011, 2014). In spite of its relatively small harvested biomass, 

arrowtooth flounder is also a key species of the EBS, because of its large predatory impacts 

on commercially important fish species, particularly walleye pollock (Hunsicker et al. 2013, 

Livingston et al. 2017).  

 We use the catch rate (in numbers.km-2), weight (in g), length (in mm) and 

temperature (in °C) data collected over the period 1992-2016 during the standardized EBS 

bottom trawl surveys conducted by NOAA Fisheries’ Alaska Fisheries Science Center 

(Stauffer 2004, Lauth & Conner 2016). These surveys are carried out annually in June-July, 

employ a fixed-station sampling scheme involving each year approximately 376 stations on a 

20 km x 20 km grid (including areas with more dense sampling near significant islands), and 

sample monitoring stations using a standard trawl net (83-112 eastern otter trawl) for a 

targeted on-bottom time of 30 minutes at a speed of 1.54 m.s-1. Individual length and weight 

data are not consistently collected during these surveys; therefore, for each study species, we 

did not have length and weight data in some years (Table 1).  

For the application, we define all spatial and spatio-temporal variation terms over a 

fixed spatial domain Ω as being piecewise constant, for computation efficiency. To 
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approximate all the spatial and spatio-temporal variation terms defined over domain Ω, we 

specify 50 “knots” uniformly distributed over the 20 km x 20 km spatial grid for the EBS, 

while confirming that our results are qualitatively similar when using more knots. The values 

of all spatial and spatio-temporal variation terms are tracked at each knot by the spatio-

temporal models (Shelton et al. 2014). Consequently, the value of a spatial or spatio-temporal 

variation term at a given location 𝑠𝑠 ∈ Ω is the value of the spatial or spatio-temporal variation 

term at the knot that is the closest to location s. After having been determined, the locations of 

the 50 knots is held fixed during model parameter estimation. 

However, to be able to produce fine-scale maps, we employ a new “fine-scale” option 

available in VAST release number 3.0.0 (Thorson 2019b), which follows standard practices of 

software R-INLA (Lindgren 2012, Lindgren & Rue 2015). This new option allows one to 

interpolate the predictions of spatio-temporal models from knots j to extrapolation grid cells 

g, using the triangulated mesh constructed from knots (Lindgren 2012, Lindgren & Rue 

2015). Specifically, a matrix 𝐌𝐌𝑔𝑔 with 𝑛𝑛𝑔𝑔 rows and 𝑛𝑛𝑗𝑗 columns is employed, where each row g 

has value zero except for three cells that represent the vertices of the triangle containing 

extrapolation grid cell g. For example, with the fine-scale option, a vector 𝛚𝛚𝑓𝑓
∗  at all 

extrapolation grid cells is predicted from values of 𝛚𝛚𝑓𝑓 at all 𝑛𝑛𝑗𝑗 knots: 

𝝎𝝎𝑓𝑓
∗ = 𝐌𝐌𝑔𝑔𝛚𝛚𝑓𝑓 (9) 

where vector 𝛚𝛚𝑓𝑓
∗  has length 𝑛𝑛𝑔𝑔 and contains the predicted value 𝛚𝛚𝑓𝑓

∗(𝑔𝑔) for spatial variation 

for every extrapolation grid cell g (Thorson 2019b).  

For each study species, we fit four alternative spatio-temporal models: (1) a model 

without bottom temperature effects; (2) a model with bottom temperature effects on both 

density and condition; (3) a model with bottom temperature effects on density only; and (4) a 

model with bottom temperature effects on condition only. We then select the most 

parsimonious of these four models based on AIC (Akaike 1974). Bottom temperature effects 
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include the linear effect of bottom temperature (i.e. the effect of T), as well as the quadratic 

effect of bottom temperature (i.e. the effect of T²), representing a dome-shaped response of 

local density and/or condition to local bottom temperatures. Both the T and T² covariates were 

standardized to have a mean of zero and a variance of one prior to being used in the spatio-

temporal models; this transformation implies that 𝛾𝛾𝑋𝑋 (i.e. a covariate times its coefficient) has 

a standard deviation equal to 𝛾𝛾 (Thorson 2015). Next, we use the AIC-selected models to 

analyze correlations between spatial variation in density and spatial variation in condition and 

between spatio-temporal variation in density and spatio-temporal variation in condition. Then, 

for each of the six study species, we examine spatio-temporal changes in density and in 

condition, in relation to local bottom temperatures where relevant. 

Finally, for each study species, we reconstruct trends in abundance-weighted condition 

𝑧𝑧 (in g): 

𝑧𝑧(𝑡𝑡) = ��𝑀𝑀𝑔𝑔 × 𝑛𝑛�∗(𝑔𝑔, 𝑡𝑡)�

𝑛𝑛𝑔𝑔

𝑔𝑔=1

× 𝛼𝛼�∗(𝑔𝑔, 𝑡𝑡) 
 
(10) 

where 𝑀𝑀𝑔𝑔 is the surface area (in km²) associated with extrapolation grid cell 𝑔𝑔; 𝑛𝑛�∗(𝑔𝑔, 𝑡𝑡) is the 

smoothed density estimated for extrapolation grid cell 𝑔𝑔 in year t (in numbers.km-2); and 

𝛼𝛼�∗(𝑔𝑔, 𝑡𝑡) is the smoothed condition estimated for extrapolation grid cell 𝑔𝑔 in year t (in g). 

Since this is the first time that an abundance-weighted estimate is generated with R package 

“VAST”, we also compare results with a simplified estimator (see Appendix S2 for details 

and results).   

 

3. RESULTS 

 We fitted four alternative spatio-temporal models for each of the six study species (i.e. 

a total of 24 spatio-temporal models). The AIC-selected model (i.e. most parsimonious 

model) of all study species included bottom temperature effects on both density and condition 
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(Table 2), in addition to spatial variation in density condition (i.e. unmeasured variation in 

density and condition that is stable over time) and spatio-temporal variation in density and 

condition (i.e. unmeasured variation in density condition that changes between years). 

 For all study species except walleye pollock, spatial variation in density was 

negatively correlated with spatial variation in condition (Fig. 2a). The correlation between 

spatial variation in density and spatial variation in condition was significant for three flatfish 

species: Kamchatka flounder, arrowtooth flounder and yellowfin sole (two-sided Wald test, p 

< 0.001 for all three species). The mean correlation coefficient between spatial variation in 

density and spatial variation in condition of the fourth study flatfish species, flathead sole, 

was strongly negative; however, this mean correlation coefficient was not significant, because 

of its very large standard errors (Fig. 2a; two-sided Wald test, p = 0.38).   

The correlation between spatio-temporal variation in density and spatio-temporal 

variation in condition was negative and significant for two of the four study flatfish species 

(Fig. 2b): arrowtooth flounder (two-sided Wald test, p = 0.01), and flathead sole (two-sided 

Wald test, p = 0.04). By contrast, the correlation coefficient between spatio-temporal variation 

in density and spatio-temporal variation in condition of Kamchatka flounder, yellowfin sole, 

Pacific cod and walleye pollock was positive and not significant.  

For all study species, the linear and quadratic effects of bottom temperature on density 

and condition were usually significant (Table 3). The exceptions to this usual pattern were the 

linear effect of bottom temperature on walleye pollock density, the quadratic effect of bottom 

temperature on Pacific cod density, and the quadratic effect of bottom temperature on flathead 

sole condition. For all species, the linear effects of bottom temperature on density and 

condition were positive, while the quadratic effects were usually negative (except for 

Kamchatka flounder density, arrowtooth flounder density, and flathead sole condition; Table 
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3). This entails that it was usually possible to identify the optimal bottom temperature for 

population density and fish condition for the six study species (Table 3). 

We examine here in detail the patterns of spatial and spatio-temporal variation in 

density and condition only for Kamchatka flounder, arrowtooth flounder and yellowfin sole 

for select years (Figs. 3-5), including 1999 and 2012, which were very cold years, and 2016, 

which was a very warm year (Fig. S1). All the spatial and spatio-temporal variation estimates 

of the study species for the years of the period 1992-2016 for which both catch rate and 

length-weight data were available are provided in the Electronic supplements (Fig. S3).  

 The expected density of Kamchatka flounder was highest on the Outer Shelf of the 

EBS, where the expected condition of the species was lowest (Figs. 3a-b). The expected 

condition for Kamchatka flounder was highest on the Inner Shelf of the EBS (Fig. 3b). In the 

very cold year of 2012, arrowtooth flounder density and condition over the entire EBS were 

lower than their long-term average, although condition was relatively higher than average in 

the central part of the Outer Shelf than elsewhere in the EBS region (Figs. 4c-d). In the very 

warm year of 2016, arrowtooth flounder density was higher than its long-term average on the 

Inner Shelf, where condition was relatively lower than average (Figs. 4e-f). In 2016, 

arrowtooth flounder condition was higher than its long-term in the northern and central parts 

of the Outer Shelf of the EBS (Fig. 4f).  

 As was the case for Kamchatka flounder, the expected density of arrowtooth flounder 

was highest on the Outer Shelf of the EBS, where its expected condition was low; and the 

Inner Shelf was the area of the EBS where the highest values of arrowtooth flounder expected 

condition occurred (Figs. 4a-b). In the very cold year of 2012, arrowtooth flounder density 

and condition tended to be lower than their long-term averages over the entire EBS, although 

condition was relatively higher than average in the central part of the Outer Shelf than 

elsewhere in the EBS region (Figs. 4c-d). In the very warm year of 2016, arrowtooth flounder 
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density was higher than its long-term average on the Inner Shelf, where the condition of the 

species was lower than average (Figs. 4e-f). In 2016, arrowtooth flounder condition was 

higher than its long-term average in the northern and central parts of the Outer Shelf of the 

EBS (Fig. 4f). 

 The expected density of yellowfin sole was highest on the Inner and Middle Shelf, 

where the expected condition of the species was lowest (Figs. 5a-b). The highest values of 

yellowfin sole expected condition were found in the southern part of the Outer Shelf of the 

EBS (Fig. 5b). In the very cold year of 1999, yellowfin sole density was higher than its long-

term average in the northernmost areas of the EBS, contrasting with the rest of the EBS region 

where the density of the species tended to be lower than average (Figs. 5c-d). In 1999, 

yellowfin condition was lower than its long-term average on the Inner Shelf (Fig. 5d). In the 

very warm year of 2016, yellowfin sole density was higher than its long-term average in the 

southern part of the Outer Shelf, while the condition of the species was higher than average on 

the Inner Shelf and in the northern part of the Middle Shelf (Figs. 5e-f).  

 Because the spatio-temporal models estimated near-exact opposite patterns of spatial 

variation in density and spatial variation in condition for Kamchatka flounder, arrowtooth 

flounder and yellowfin sole (Figs. 3-5), we conducted additional analyses to determine 

whether estimating density and condition jointly (i.e. assuming a correlation between the two 

variables) vs. separately (i.e. not assuming a correlation) would yield different results (Fig. 

S4). For flathead sole, Pacific cod and Walleye pollock, the patterns of spatial variation in 

condition were virtually unchanged when density and condition were estimated jointly vs. 

separately. By contrast, for Kamchatka flounder, arrowtooth flounder and yellowfin sole, the 

spatio-temporal model estimating density and condition jointly shrank spatial variation in 

condition somewhat towards the inverse of the spatial variation in density, yet patterns of 



19 
 

spatial variation in condition were qualitatively similar with or without correlation between 

density and condition (Fig. S4). 

 None of the time series of abundance-weighted condition showed a continuous 

increasing or decreasing trend, except that of Kamchatka flounder (Fig. 6). The time series of 

abundance-weighted condition of Kamchatka flounder demonstrated a marked increasing 

trend between 1992 and 2016. Moreover, the abundance-weighted condition of arrowtooth 

flounder increased between 1992 and 2005 and tended to decrease afterwards. By contrast, the 

abundance-weighted condition of walleye pollock decreased between 1992 and 2009 and 

largely increased afterwards. Between 1992 and 2016, the abundance-weighted condition of 

five species (Kamchatka flounder, arrowtooth flounder, flathead sole, Pacific cod, and 

walleye pollock) increased, while that of yellowfin sole showed virtually no change. In the 

very cold year of 1999 (the coldest year of the period 1992-2016; Fig. S1), the abundance-

weighted condition of five of the six study species (Kamchatka flounder, arrowtooth flounder, 

flathead sole, yellowfin sole, and Pacific cod) was at or near its lowest level, and that of 

walleye pollock was also relatively low. In the very warm year of 2016 (the warmest year of 

the period 1992-2016; Fig. S1), the abundance-weighted condition of four of the six study 

species (Kamchatka flounder, flathead sole, yellowfin sole, and walleye pollock) was at or 

near its highest level, and that of arrowtooth flounder and Pacific cod was also relatively high 

(Fig. 6).  

 

4. DISCUSSION 

 Fish density can influence multiple life history processes, including natural mortality, 

growth, reproduction and recruitment, with important consequences for resource management 

decisions (Stearns & Crandall 1984, Sánchez Lizaso et al. 2000, Forrest et al. 2013). 

However, modeling studies aiming to support resource management have generally only 
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considered density-dependent effects on recruitment (Grüss et al. 2012, Andersen et al. 2017). 

Moreover, although there is growing research interest in measuring density dependence in 

growth (e.g. Lorenzen & Enberg 2002, Lorenzen 2016), this density dependence is generally 

not measured at fine spatial scales. In this study, we developed the first spatio-temporal 

statistical modeling approach simultaneously estimating changes in density and condition at 

fine spatial scales, which allows for the evaluation of the effects of density on fish condition. 

The application of our approach to six EBS groundfish species showed that it is important to 

evaluate the impacts of accounting for or ignoring density-dependence effects on condition in 

the assessments of some flatfish species (e.g. using a management strategy evaluation 

framework; Punt et al. 2016). Specifically, we found that: (1) unmeasured variation in density 

that is stable over time (i.e. spatial variation in density) had a significant and strongly negative 

effect on unmeasured variation in condition that is stable over time (i.e. spatial variation in 

condition) for three of the four study flatfish species; and (2) unmeasured variation in density 

that changes between years (i.e. spatio-temporal variation in density) had a negative and 

significant effect on unmeasured variation in condition that changes between years (i.e. 

spatio-temporal variation in condition) for two of the four study flatfish species.  

 We found that density-dependent changes in condition were more prevalent for 

flatfishes than for gadoids in the EBS. We also found that, in the EBS region, the influence of 

spatial variation in density on spatial variation in condition was stronger than the influence of 

spatio-temporal variation in density on spatio-temporal variation in condition. We initially 

expected density to have a stronger effect on the condition of EBS gadoids, based on 

empirical studies conducted in other marine regions (e.g. Lambert & Dutil 1997b, Marshall & 

Frank 1999, Pardoe et al. 2008). We also initially expected that spatio-temporal variation in 

condition would be more strongly impacted by changes in density than spatial variation in 

condition, based on the results from Thorson (2015) for the California Current, one of the 
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world’s major upwelling systems. We suspect that our two above-mentioned findings for the 

EBS are due to the fact that benthic production, which is more stable and lower over time than 

pelagic production, is more important in the EBS than in other marine regions like the 

California Current (McConnaughey & Smith 2000, Hunt et al. 2008).  

We also found that bottom temperature had large effects on both density and condition 

for the six study species. First, the most parsimonious spatio-temporal model of all study 

species included bottom temperature effects on both density and condition. Then, the 

tendency for bottom temperatures to increase between the first (1992) and last year (2016) of 

the study period (Fig. S1) was accompanied by an overall increase in the abundance-weighted 

condition of five of the six study species (Kamchatka flounder, arrowtooth flounder, flathead 

sole, Pacific cod, and walleye pollock) (Fig. 6). Finally, we found that the coldest and 

warmest years of the period 1992-2016 (1999 and 2016, respectively) were associated with, 

respectively, low and high fish condition for all study species, as shown previously by Boldt 

et al. (2015). Boldt et al. (2015) discussed that low fish conditions in the EBS in 1999 were 

likely due to the fact that low bottom temperatures reduced both prey productivity and 

predator-prey spatial overlap, while also increasing predator energy requirements. Therefore, 

we conclude that forecasts of changes in weight-at-age within some EBS flatfish assessments 

will require understanding both density-dependence and bottom temperature effects on 

condition.  

 Local patterns of spatial and spatio-temporal variation in density and condition 

generally varied largely from one study species to another (Figs. 3-5 and Fig. S3). Exceptions 

to this general pattern included Kamchatka flounder and arrowtooth flounder, whose patterns 

of spatial and spatio-temporal variation in density and condition were similar (Figs. 3-4 and 

Fig. S3). This result is not surprising, as Kamchatka flounder and arrowtooth flounder share 

very similar biological and ecological attributes (Stevenson & Hoff 2009). However, while 
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the local patterns of spatial and spatio-temporal variation in density and condition of 

Kamchatka flounder and arrowtooth flounder were similar, the abundance-weighted condition 

of the Kamchatka flounder population increased markedly over the period 1992-2016, while 

that of the arrowtooth flounder population increased until 2005 and tended to decrease 

afterwards. Interestingly, the abundance-weighted condition of the walleye pollock population 

followed opposite trends to that of the arrowtooth flounder population, namely decreased until 

2009 and then largely increased. This result may stem from the fact that arrowtooth flounder 

is the major predator of walleye pollock, so that a reduction in arrowtooth flounder condition 

may decrease the level of predation pressure exerted by the arrowtooth flounder population on 

walleye pollock, thereby allowing for an increase in walleye pollock condition (Hunsicker et 

al. 2013, Livingston et al. 2017). We also suspect that introducing arrowtooth flounder density 

as a covariate in the spatio-temporal model of walleye pollock may result in a more 

parsimonious and more reliable model.  

We envision three main avenues for future research. First, because the spatial 

distribution patterns of the juveniles and adults of most fish species are distinct, spatio-

temporal models should ideally be developed separately for juveniles and adults for 

estimating simultaneous changes in condition and density. Second, one could conduct multi-

species analyses using a more complex spatio-temporal model estimating spatial and spatio-

temporal variation in density and condition for multiple species simultaneously (or for the 

juvenile and adult stages of multiple species simultaneously, if data availability allows) 

(Thorson & Barnett 2017). This more complex spatio-temporal model would employ a similar 

model structure (i.e. Eq. 6), but would associate each category c with a unique combination of 

species and variable (e.g. 𝑐𝑐 = 1 and 𝑐𝑐 = 2 would be density and condition for Kamchatka 

flounder, 𝑐𝑐 = 3 and 𝑐𝑐 = 4 would be density and condition for arrowtooth flounder, etc.). Multi-

species analyses using the more complex spatio-temporal model would allow one to infer 
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results for specific guilds (e.g. small-mouth vs. predatory flatfishes), but also to estimate 

spatial and spatio-temporal variation in density and condition for species with few encounter 

data (which single-species spatio-temporal models are not able to do) (Thorson & Barnett 

2017). Finally, in the present study, we considered only the effects of bottom temperatures on 

density and condition, but future studies may include more covariates in spatio-temporal 

models and evaluate which covariates have the strongest effects on density and condition 

(Thorson 2015). In this study, we allowed for linear and quadratic bottom temperature effects, 

but future studies could also consider spatially-varying coefficients to explore non-local 

effects of oceanographic indices such as the cold pool. Previous studies have shown that these 

oceanographic indices have a large impact on spatial distribution for demersal species in the 

EBS (Hunt et al. 2011, Hollowed et al. 2012), but they have not to our knowledge been 

applied in spatial models of fish condition.   

 In conclusion, our novel spatio-temporal modeling approach for simultaneously 

estimating changes in density and condition highlighted the need to evaluate the impacts of 

accounting for or ignoring density-dependence and bottom temperature effects on condition 

within some EBS flatfish assessments (e.g. using a management strategy evaluation 

framework). We recommend future studies to implement our approach to diverse marine 

ecosystems and to more species to better inform stock and habitat assessments (Marshall & 

Frank 1999, Lloret et al. 2002, Thorson 2015), but also to answer important ecological 

questions, such as the contribution of decreases in fish condition to marine population 

collapses (e.g. northern Gulf of St. Lawrence cod; Lambert & Dutil 1997b) or the impacts of 

density-dependent changes in condition on population biomasses and fisheries yields relative 

to those of density-dependent changes in recruitment (Andersen et al. 2017).  
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Electronic supplements 

Fig. S1. Maps showing the bottom temperature estimates (in °C) used within the spatio-

temporal models to approximate spatial and spatio-temporal variation in density and 

condition, for each year of the period 1992-2016.  

 

Appendix S2. Details and predictions of the simplified estimator.  

 

Fig. S3. Spatial variation in log-density and log-condition and spatio-temporal variation in 

log-density and log-condition for different years of the period 1992-2016, for the Akaike’s 

information criterion (AIC)-selected models of the six study species. The color legends for 

spatio-temporal variation in log-density and log-condition are provided in the rightmost 

columns and have units ln(abundance.km-2) in the case of log-density and ln(g) in the case of 

log-condition. For each species, only estimations for those years where both density and 

length-weight data were available are shown. 
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Fig. S4. Spatial variation in log-condition (in ln(g)) predicted by the Akaike’s information 

criterion (AIC)-selected models of the six study species, when density and condition are 

estimated jointly vs. separately.   
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TABLES 

Table 1. Study species, and years for which both density and length-weight data are available 

for these species.  

Species  Years for which both density and length-weight data are 
available for the species 

Kamchatka flounder (Atheresthes evermanni) 1995-1997, 2002, 2012-2016 
Arrowtooth flounder (Atheresthes stomias) 1996, 2002, 2004-2006, 2008-2012, 2014-2016 
Flathead sole (Hippoglossoides elassodon) 1997, 1999-2016 
Yellowfin sole (Limanda aspera) 1994, 1999-2016 
Pacific cod (Gadus macrocephalus) 1993, 1998-2016 
Walleye pollock (Gadus chalcogrammus) 1999-2016 
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Table 2. Model selection results using Akaike’s information criterion (AIC) applied to the 

maximum marginal likelihood for each of the spatio-temporal models fitted in this study.  

Species  ΔAIC for the 
model without 
bottom 
temperature 
effects 

ΔAIC for the 
model with bottom 
temperature 
effects on both 
density and 
condition 

ΔAIC for the 
model with bottom 
temperature 
effects on density 
only 

ΔAIC for the 
model with bottom 
temperature 
effects on 
condition only 

Kamchatka 
flounder  

442.8 0 226.6 211.9 

Arrowtooth 
flounder  

398.7 0 508.9 523.9 

Flathead sole  383.1 0 12 369.9 
Yellowfin sole  1256.8 0 398.1 835 
Pacific cod  1189.2 0 220.1 352.6 
Walleye pollock 928.8 0 643.4 284.3 
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Table 3. Linear and quadratic bottom temperature effects on density and condition predicted 

by the Akaike’s information criterion (AIC)-selected spatio-temporal models of the six study 

species, and predicted optimal bottom temperatures for density and condition for the six 

species. P-values for a two-sided Wald test (strength-of-evidence measures of importance) are 

also indicated in parentheses.  

Species  Linear 
effect of 
bottom 
temperature 
on density 

Quadratic 
effect of 
bottom 
temperature 
on density 

Optimal 
bottom 
temperature 
for density 
(°C) 

Linear effect 
of bottom 
temperature 
on condition 

Quadratic 
effect of 
bottom 
temperature 
on condition 

Optimal 
bottom 
temperature 
for condition 
(°C) 

Kamchatka 
flounder 

0.18 ± 0.03 
(p < 0.001) 

0.17 ± 0.03 
(p < 0.001) 

Not 
applicable 

40.82 ± 0.70 
(p < 0.001) 

-39.79 ± 1.29 
(p < 0.001) 

1.1 

Arrowtooth 
flounder  

0.41 ± 0.04 
(p < 0.001) 

0.13 ± 0.03 
(p < 0.001) 

Not 
applicable 

40.82 ± 0.70 
(p < 0.001) 

-39.79 ± 1.29 
(p < 0.001) 

0.5 

Flathead 
sole  

0.14 ± 0.06 
(p = 0.02) 

-0.12 ± 0.02 
(p < 0.001) 

0.6 0.14 ± 0.06 
(p = 0.02) 

0.002 ± 0.03 
(p = 0.94) 

Not 
applicable 

Yellowfin 
sole  

0.91 ± 0.05 
(p < 0.001) 

-0.18 ± 0.04 
(p < 0.001) 

2.5 6.60 ± 0.21 
(p < 0.001) 

-1.25 ± 0.09 
(p < 0.001) 

2.6 

Pacific cod  0.15 ± 0.03 
(p < 0.001) 

-0.01 ± 0.02 
(p = 0.74) 

9.9 53.40 ± 0.49 
(p < 0.001) 

-23.16 ± 0.43 
(p < 0.001) 

1.2 

Walleye 
pollock 

0.02 ± 0.03 
(p = 0.55) 

-0.12 ± 0.02 
(p < 0.001) 

0.1 11.14 ± 0.79 
(p < 0.001) 

-3.65 ± 0.51 
(p < 0.001) 

1.5 
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FIGURE CAPTIONS 

Fig. 1.  Map of the Inner, Middle and Outer Shelf of the Eastern Bering Sea off Alaska.   

 

Fig. 2. Correlation coefficients between spatial variation in density and spatial variation in 

condition and between spatio-temporal variation in density and spatio-temporal variation in 

condition, predicted by the Akaike’s information criterion (AIC)-selected spatio-temporal 

models. Error bars represent mean ± standard error. P-values for a two-sided Wald test 

(strength-of-evidence measures of importance) are also indicated. KF = Kamchatka flounder 

(Atheresthes evermanni) – AF = arrowtooth flounder (Atheresthes stomias) – FS = flathead 

sole (Hippoglossoides elassodon) – YS = yellowfin sole (Limanda aspera) - PC = Pacific cod 

(Gadus macrocephalus) – WP = walleye pollock (Gadus chalcogrammus).  

 

Fig. 3. Spatial variation (i.e. unmeasured variation that is stable over time) in (a) log-density 

and (b) log-condition, and spatio-temporal variation (i.e. unmeasured variation that changes 

between years) in (c, e) log-density and (d, f) log-condition for different years of the period 

1992-2016, for the Akaike’s information criterion (AIC)-selected model of Kamchatka 

flounder (Atheresthes evermanni). The color legends for spatio-temporal variation in log-

density and log-condition are provided in the rightmost column and have units 

ln(abundance.km-2) in the case of log-density and ln(g) in the case of log-condition. 

 

Fig. 4. Spatial variation (i.e. unmeasured variation that is stable over time) in (a) log-density 

and (b) log-condition, and spatio-temporal variation (i.e. unmeasured variation that changes 

between years) in (c, e) log-density and (d, f) log-condition for different years of the period 

1992-2016, for the Akaike’s information criterion (AIC)-selected model of arrowtooth 

flounder (Atheresthes stomias). The color legends for spatio-temporal variation in log-density 
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and log-condition are provided in the rightmost column and have units ln(abundance.km-2) in 

the case of log-density and ln(g) in the case of log-condition. 

 

Fig. 5. Spatial variation (i.e. unmeasured variation that is stable over time) in (a) log-density 

and (b) log-condition, and spatio-temporal variation (i.e. unmeasured variation that changes 

between years) in (c, e) log-density and (d, f) log-condition for different years of the period 

1992-2016, for the Akaike’s information criterion (AIC)-selected model of yellowfin sole 

(Limanda aspera). The color legends for spatio-temporal variation in log-density and log-

condition are provided in the rightmost column and have units ln(abundance.km-2) in the case 

of log-density and ln(g) in the case of log-condition. 

 

Fig. 6. Trends in relative abundance-weighted condition (grey line: mean; grey shading: 95% 

confidence interval) predicted by the Akaike’s information criterion (AIC)-selected spatio-

temporal models of the six study species. For each species, only predictions for those years 

where both density and length-weight data were available are shown. Relative abundance-

weighted condition is abundance-weighted condition relative to mean abundance-weighted 

condition over the years for which both density and length-weight data were available. 
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FIGURES 

Fig. 1 
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Fig. 2  
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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